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Abstract— Monitoring large bodies of water, such as the
Laurentian Great Lakes in North America, can be challenging
and costly. The bathymetry, the diffuse attenuation coefficient for
downwelling irradiance (Kd), and the particulate backscattering
coefficient (bbp) are important metrics in monitoring water
quality in lakes and have typically been measured in two ways:
1) via in situ sampling campaigns, which are expensive, time-
consuming, and have a low spatial resolution; and 2) via passive
optical imagery, which can have errors in excess of 50%. Recently,
Ice, Cloud, and land Elevation Satellite-2 (ICESAT-2), an active
light detection and ranging (LiDAR)-based satellite, has proven
effective in deriving the bathymetry, Kd , and bbp in the global
oceans. However, validation of such metrics has never been
done on satellite flyovers taken on the same day as in situ
measurements. Likewise, studies on freshwater environments
have been limited. Here, we compare in situ data sampled from
Lake Michigan and Big Glen Lake between August 13th and
14th, 2021, and results derived from an ICESat-2 flyover in the
same region on August 14th, 2021. We find excellent agreement
between the in situ values and the satellite-derived values for
all three metrics. This suggests that ICESat-2 and other future
LiDAR-based satellites will be powerful tools for monitoring large
freshwater lakes.

Index Terms— Bathymetry, diffuse attenuation coefficient for
downwelling irradiance (Kd), Ice, Cloud, and land Elevation
Satellite-2 (ICESAT-2), Laurentian Great Lakes, light detection
and ranging (LiDAR), particulate backscattering coefficient (bbp).

I. INTRODUCTION

ICESAT-2 was launched by the National Aeronautics and
Space Administration (NASA) in 2018 with the primary

goals of measuring changes in polar ice sheets, measuring
the free-board amount of sea ice, and measuring the amount
of vegetation canopy across Earth [1]. This is done with the
onboard ATLAS LiDAR, which uses green (532 nm) light to
map photon returns across six beams, resulting in 70 cm along
profile resolution [2]. Since its launch in 2018, secondary
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uses of Ice, Cloud, and land Elevation Satellite-2 (ICESAT-
2) capabilities have been assessed and implemented. To start,
the bathymetry of both shallow coastal seaways [3] and water
greater than 25 m has been recorded [4], with results typically
validated by and combined with optical imagery and in situ
values to produce high resolution gridded bathymetry [5].

Along with bathymetry, by building upon work done with
previous spaceborne LiDAR-based systems [6], [7], recent
studies have shown optical properties can be derived from
ICESat-2 photon return. Both the diffuse attenuation coef-
ficient for downwelling irradiance (Kd ) and the particulate
backscattering coefficient (bbp) can be obtained from the
distribution of photons in the water column [8]. bbp is a
central inherent optical property that gives important insight
into ecological processes that happen in large bodies of water.
On the global oceans, bbp has been used to quantify global
carbon stocks [9], track the vertical migrations of ocean
animals [10], and quantify primary production [11]. Likewise,
Kd is critical for understanding how much light is penetrating
a given water column (i.e., photic zone depth), which has been
shown to control biochemical and physical processes such as
primary production that dictate the abundance of life within a
water column [12].

Most studies calculating ICESat-2 bathymetry and all stud-
ies calculating ICESat-2 optical properties have been done on
the global oceans. However, ICESat-2 still makes passes over
some of the world’s largest lakes, including Lake Michigan.
Nearshore bathymetry is important in the scope of the Lauren-
tian Great Lakes as changes due to lake warming can affect
the spawning environments of fish and can also change local
boating patterns [13]. Likewise, decreases in Kd and bbp over
a 14 year period on Lake Michigan and Lake Huron have been
tied to the effect of dreissenid mussels, phosphorus abatement,
and climate change on the lakes [14].

Here, we perform two experiments with respect to ICESat-2.
To start, we evaluate for the first time measurements of
bathymetry, Kd , and bbp calculated from ICESat-2 to in situ
values sampled at the same time and location as the satellite
flyover. This is done in two separate locations: a large fresh-
water lake (Lake Michigan) and a small freshwater lake (Big
Glen Lake) in the area surrounding Glen Arbor, Michigan,
USA. This test serves to validate the reliability of ICESat-
2-derived products to ground truth measurements and can
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be taken as an expansion of past studies in other locations.
Second, we appraise the value of spaceborne LiDAR remote
sensing as a tool to monitor large, freshwater lakes. We close
by commenting on the role that spaceborne LiDAR can play
in the future of Great Lakes remote sensing.

II. DATA AND METHODS

A. In Situ Sampling

Our sampling campaign took place on Lake Michigan and
Big Glen Lake in the northwest region of Michigan, USA,
as indicated by Fig. 1. Sampling was done in two stages: First,
bathymetry data were collected on both lakes via a boat survey
using a sonar depth sounder. This was done along the projected
path of the ICESat-2 flyover. Lake conditions resulted in a
slight horizontal offset between the in situ sampling profile
and the ICESat-2 profile, especially on Big Glen Lake. Bathy-
metric data sampling took place the day prior to the flyover
on August 13th, 2021. Optical property sampling on Big Glen
Lake also took place on August 13th. Optical property data on
Lake Michigan were sampled at approximately the same time
as the August 14th, 2021 ICESat-2 flyover, which occurred at
≈3 : 30 P.M. EST.

Kd was measured using a Seabird Hyperpro II profil-
ing radiometer following previously reported methods [15].
Briefly, the profiler was cast in a free-fall to a geometric depth
corresponding to two optical depths at 490 nm, approximately
20 m in Lake Michigan and 13 m in Big Glen Lake. Ten
casts were made at each site to reduce the effects of wave
focusing in the upper water column. Spectral downwelling
plane irradiance (Ed ) profiles (10) were binned (mean) at
0.5 m depth intervals. Spectral Kd of the first optical depth
(depth at which 10% of the light just below the surface
remains [16]) was computed from the binned profiles by
calculating a linear fit of the log-transformed Ed profile (from
0 m to 1 optical depth) where the slope of the fit is taken as
Kd (m−1).

bbp was computed for nine spectral bands (410, 440, 490,
510, 532, 667, 705, 715) using a Seabird ECO BB-9 scattering
meter attached to a profiling frame that also included a Seabird
AC-S and CTD. Vertical profiles were made through the
photic zone at each site, as estimated from the profiling
radiometer. Profiles of bbp were averaged into 0.5 m bins.
A Secchi disk was also deployed at each sampling location,
as a crude estimation of optical depth is needed for Kd and
bbp calculations from ICESat-2.

B. ICESat-2 Bathymetry, Kd and bbp

ATLAS/ICESat-2 L2A Global Geolocated Photon Data was
used to derive all products. This data set contains the coor-
dinates and elevations of all photons that are returned to
ICESat-2 [17]. Specifically, we use data from the middle,
a strong beam of a flyover on Lake Michigan and Big Glen
Lake from August 14th, 2021, shown in Fig 1. Bathymetry was
calculated from the photon returns following the procedure
in [18]. Here, an empirical calculation is used to group bottom
returns from a satellite in high, medium, and low confidence
readings of the bathymetry. These readings are then corrected

Fig. 1. Sampling location on Lake Michigan and Big Glen Lake. The red
line indicates the location of the in situ bathymetric sampling. The blue dots
show the location of the optical property in situ sampling. Finally, the green
line shows the location of the ICESat-2 flyover. Overlain is the PlanetScope
Ortho image of Glen Arbor, MI, USA taken on August 14th, 2021 showing
the conditions on Lake Michigan and Big Glen Lake during the ICESat-2
flyover used in this survey. Note the stark difference in water color between
Lake Michigan and Big Glen Lake.

for refraction that occurs as the photons move through the
water [19]. In this study, we only evaluate the high-confidence
bathymetry returns.

Both Kd and bbp are calculated using the method developed
by [8], [20]. For the scope of this study, both Kd and bbp refer
to the metrics sampled at a wavelength of 532 nm. Here, the
photons along the flight line of the satellite are grouped into
0.001 degree latitude by 0.1 m bins on each body of water.
These bins are then normalized and averaged over the length
of the flight track to create a photon distribution at depth for
each lake. Deconvolution of the signal is performed to remove
the effects of potential after pulses that occur as the LiDAR
signal passes through the water/surface interface.

Kd is then taken as the slope of the decay of the photon
signal through the water column between 3 m and 1.5 optical
depths, where the limits represent data limitations due to
after pulses and LiDAR penetration depth respectively. The
optical depths are estimated from Secchi disk measurements
and are taken as 12 m in Lake Michigan and 4 m in Big
Glen Lake. Column integrated bbp and depth-dependent bbp
are calculated directly from the binned, normalized, photon
return using predetermined constants and dynamic variables
in the derivation. For the scope of our study, we assumed the
backscatter of freshwater (Bw) to be 0.005 m−1 [21] and the
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wind speed (v) to be 7 m * s−1 (measured in situ). All other
inputs as well as an in-depth analysis of these calculations can
be found in [8].

III. RESULTS

A. Bathymetry Validation

We first examined how ICESat-2 derived bathymetry com-
pared to in situ sampled bathymetry at the same relative time
(within 24 h) and the same location. This was done across Big
Glen Lake, shown in Fig. 2(a), and Lake Michigan, shown in
Fig. 2(b). To start, we looked at the results from Big Glen Lake
and found a somewhat substantial horizontal offset between
the in situ sampled data and the satellite-derived data, resulting
in a medium difference of 1.22 m. This offset was caused by
differences in the sampling line and the satellite line, with
the overall trend in the bathymetry being similar between the
two sources of data. On Lake Michigan, Fig. 2(b), the in situ
sampling line was much closer to the satellite line, resulting
in a medium percent difference of only 0.67 m between the
two.

Our results from the bathymetry survey also showed the
maximum depth that ICESat-2 could reliably sense on fresh-
water lakes. On Big Glen Lake, the maximum sensed depth
from ICESat-2 was ∼8 m while on Lake Michigan, the
satellite sensed depth was ∼12 m. In each location, a Secchi
disk was deployed, with results yielding 3.2 m on Big Glen
Lake and 12 m on Lake Michigan. Therefore, the maximum
depth is largely dependent on the clarity of the water, with
increasing clarity (Secchi disk depth) related to larger max-
imum depth, an occurrence previously noted in other water
environments [19].

B. Kd and bbp Validation

We next examined how in situ sampled Kd and bbp values
compared to values derived from ICESat-2. To start, we look
at our results on Big Glen Lake and find that for Kd , the in situ
value (0.156 m−1) agreed very well with the satellite-derived
value (0.158 m−1), with a percent difference of only 1.27%
between them. Kd is derived from the slope of the blue line
shown in Fig. 3(a). On Lake Michigan, shown in Fig. 3(b),
we also found that the in situ sampled Kd (0.0996 m−1) agreed
very well with the ICESat-2 Kd (0.0921 m−1), with a percent
difference of only 7.82%. Our results for Kd are also consistent
with our maximum depth results from our bathymetry survey,
with the clearer lake (Lake Michigan) having a lower Kd

value than Big Glen Lake. Likewise, our Kd results agree
with Secchi disk measurements, where the Secchi depth was
much smaller for Big Glen Lake than for Lake Michigan.

We also compared satellite derived bbp to in situ sampled
bbp on Lake Michigan, shown by Fig. 3(b). This was done
by looking at the photon distribution at depth, and then the
column integrating the result. The photons used to calculate
bbp are taken from around 3 m below the surface, down to
1.5 optical depths below the surface (18 m), as indicated by
the red points in Fig. 3(b). Our results once again show great
coherence between the in situ values (0.0046 m−1) and the
satellite values (0.00463 m−1), with a percent difference of

Fig. 2. Comparison between (black) in situ sampled values and (red)
ICESat-2 derived values. (a) Big Glen Lake. (b) Lake Michigan. Outliers in
in situ sampling values are due to errors in sampling and are not true trends
in the data.

only 0.65%. Unfortunately, we were unable to sample bbp on
Big Glen Lake due to limitations of deploying our device
on the day of the Big Glen Lake data collection. However,
we were still able to derive bbp on Big Glen Lake, which is
shown by Fig. 3(a). Here, the value of column integrated bbp
was 0.0110 m−1. Though there is no direct compassion to an
in situ value, this bbp is consistent with studies that indicate
that increasing Kd should yield increasing bbp [22].

C. bbp at Depth

Our final analysis compared bbp sampled at a depth between
in situ value and ICESat-2 derived values on Lake Michigan,
which is indicated by Fig. 4(a). Here, bbp is compared at 1 m
intervals ranging from 3 m to 1.5 optical depths, which is
taken to be 18 m on Lake Michigan. We found a satellite-
derived bbp at a depth that is much more variable than in situ
values. The standard deviation at depth for ICESat-2 bbp is
0.0023 m−1 while the standard deviation for in situ values is
0.0002 m−1, an order of magnitude less. Likewise, the in situ
bbp is mostly constant at depth while the ICESat-2 bbp is
elevated close to the surface of the water, decays to a minimum
of 0.0012 m−1 at around 10 m of depth, and then spikes to
a maximum value at the bottom of the profile greater than
0.015 m−1. Also shown in Fig. 4(b) is the total chlorophyll
concentration in sampled at depth and the water temperature,
both sampled at the same time and location as the in situ values
in Fig. 4(a). Note that the water temperature is mostly constant
below 5 m, indicating that all data shown was collected above
the thermocline.
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Fig. 3. Kd and bbp comparison between in situ sampled values and ICESat-2
derived values on (a) Big Glen Lake and (b) Lake Michigan. The black dots in
each figure represent the binned photons while the reds represent the binned
photons used in the calculations. The blue line represents the fit slope in
calculating Kd .

IV. DISCUSSION

Here, for the first time, we compare a variety of ICESat-2
derived metrics regarding the subsurface properties of fresh-
water to the same metrics sampled in situ within the same
day of each other. To start, we looked at the bathymetry on
two separate lakes with different levels of water clarity and
found that ICESat-2 was an effective tool for measuring mid-
depth bathymetry. Specifically, ICESat-2 was able to measure
the bathymetry effectively down to approximately one optical
depth, which is variable between lakes based on the water
clarity at the given location. The depth limit likely partially
stems from only taking the high-confidence bathymetry pho-
tons. If medium and low confidence signals are considered,
this would likely increase the range of depths that are able
to be observed by ICESat-2, but would also likely increase
errors.

In the study, we also examined the effectiveness of monitor-
ing Kd on large, freshwater lakes using ICESat-2. We found
that in two different lakes with differing optical properties,
ICESat-2 derived Kd values agreed almost perfectly with
in situ sampled values. This was also verified empirically
by comparing Secci disk depths between the two locations.
Likewise, in looking at the contrast in watercolor in the optical
satellite imagery, we can also draw an empirical conclusion
that both bodies of water should have substantially different
values of Kd (Fig. 1). While Kd was only sampled at one
location for ICESat-2, by taking an average value over a
segment of the flyover Kd can also be derived at every point
along every satellite flyover on Lake Michigan. This could
effectively map and monitor how Kd changes in different
locations on the lake. Likewise, there are approximately six

Fig. 4. (a) bbp sampled at depth for (red) ICESat-2 and (black) in situ values.
(b) Chlorophyll a (red dotted) and water temperature (black dotted) in situ
sampled values at the same location/time as those in (a).

separate flyovers (depending on the quality of the data return)
in varying locations on Lake Michigan every month, which
would allow for monitoring of Kd on the lake on a monthly
basis.

The final subsurface metric that was monitored using
ICESat-2 on the freshwater lakes in our survey was bbp. This
was done as a column-integrated value of Lake Michigan and
Big Glen Lake, and also calculated as a function of depth on
Lake Michigan. On Lake Michigan, where in situ bbp was also
sampled, the column integrated bbp from ICESat-2 was again
nearly identical to the in situ sampled value. For the bbp at
depth, ICESat-2 was able to effectively sample bbp between
3 and 18 m (1.5 optical depths). Compared to the in situ
values at the depth, the ICESat-2 results were much more
variable. This is likely related to taking an average across
a 10 km long satellite track as opposed to sampling at one
particular location. However, trends in the ICESat-2 derived
bbp (Fig. 4(a)) seem to correlate with trends in Chlorophyll
a concentration where both metrics increase as a function of
depth. That said, further sampling and analysis are needed
to validate any connections between the two. Finally, as with
Kd , bbp could also be sampled across all of Lake Michigan
on a monthly basis, which is likely where the applicability of
these results lies. Here, the structure of the water column (in
regards to bbp) between 3 and 18 m could also be mapped,
which would be novel for a large, freshwater lake.
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V. CONCLUSION

We report that ICESat-2 will be a valuable tool in the
future for monitoring and remote sensing of not only Lake
Michigan, but also other large, freshwater, bodies of water.
A comparison between in situ values and satellite-derived
values of bathymetry, Kd , and bbp all show good coherence.
We note that more sampling campaigns are likely needed
for a more thorough evaluation of the metrics, especially for
nighttime flyovers of ICESat-2, which were not evaluated
in this study. However, the preliminary results from this
survey certainly point toward the incorporation of ICESat-2
into the remote sensing toolbox on the Great Lakes and
beyond.
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